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Consider the complex Fourier series:
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Two forms of the Fourier coefficient ¢, for complex Fourier series is:
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Recall Leibniz integral rule for h (t) = f;((f)) f(t,z)dx:
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Apply this formula to the two lines of Equation 2, differentiating in L:
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These formulas can be used to solve for g (x) if ¢, truly represents a Fourier Series. There are some
noteworthy technical aspects of these equations:

e The derivative with respect to n assumes that n is a continuous variable, though we know in
the application that it is an integer. Thus, there are e=2™" or e~ ™" terms in ¢, that must be
maintained when taking the derivative before we simplify them assuming that n is an integer.

e When solving for g, the n dependence must simplify out such that all that is left is L
dependence. In fact, I suspect that the necessary and sufficient condition for a series defined
by ¢, to be considered a Fourier series is that Equation 4 is satisfied and g is solved for purely
in terms of L and not n.



The PDEs defined in Equation 4 are solved by Equation 2 when ¢ (x) is known and ¢, is unknown.
However, the Equation 4 can also be very useful when ¢, is known and g (z) is unknown, since
the function being integrated to yield ¢, can be solved for. The major barrier from using this
formulation to solve for a general sum depending only on the integer variable n is that the L
dependence must be right to make the series a Fourier series (where the derivative with respect to
L is properly taken to guarantee that g (L) depends only on L) while also having the “hidden” n
dependence properly accounted for (so that the derivative with respect to n is correct). Of course,
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for a general sum, we would use Equation 1 with # = 0 and L = 1, such that g (0) =) " cy.
Of course, if only the n is present in ¢,, then we generally represent a series. It seems unclear to
me whether for a given n dependence if there could be multiple L dependences that could give the
same answer for the series defined in terms of the integer variable n once we set L =1 and z =0
after taking the derivatives (i.e. solving for g (z = 0)). One idea is to first consider odd functions,
such that the second line of Equation 4 simplifies to solve for ¢, + naC” + Lacn = 0 (note that
this ¢, here is defined somewhat differently than in the first line of Equatlon 2 since the integral
bounds are different between Line 1 and Line 2). We will delve deeper into this discussion in future
posts - for now, we will conclude this post by verifying that the first line of Equation 4 is true for a
general power term - g (z) = z°, where s is a positive integer. First, define the falling Pochhammer
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where (s), = 1 always. The calculation is as follows:
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Having carried out the computation, we can now simplify and make n an integer, then combine
into Equation 4:
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as expected. This verifies the topic formula for any power series. This concludes this blog post.



