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Consider the complex Fourier series:

g (x) =

∞∑
n=−∞

cne
2πin x

L (1)

Two forms of the Fourier coefficient cn for complex Fourier series is:
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∫ L

0
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Recall Leibniz integral rule for h (t) =
∫ b(t)
a(t) f (t, x) dx:

∂h (t)

∂t
= f (t, b (t))

db (t)

dt
− f (t, a (t))

da (t)
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+
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a(t)
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∂f (t, x)

∂t
(3)

Apply this formula to the two lines of Equation 2, differentiating in L:

L
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+ cn = g (L)− n
∂cn
∂n

L
∂cn
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)
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(4)

These formulas can be used to solve for g (x) if cn truly represents a Fourier Series. There are some
noteworthy technical aspects of these equations:

� The derivative with respect to n assumes that n is a continuous variable, though we know in
the application that it is an integer. Thus, there are e−2πin or e−πin terms in cn that must be
maintained when taking the derivative before we simplify them assuming that n is an integer.

� When solving for g, the n dependence must simplify out such that all that is left is L
dependence. In fact, I suspect that the necessary and sufficient condition for a series defined
by cn to be considered a Fourier series is that Equation 4 is satisfied and g is solved for purely
in terms of L and not n.
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The PDEs defined in Equation 4 are solved by Equation 2 when g (x) is known and cn is unknown.
However, the Equation 4 can also be very useful when cn is known and g (x) is unknown, since
the function being integrated to yield cn can be solved for. The major barrier from using this
formulation to solve for a general sum depending only on the integer variable n is that the L
dependence must be right to make the series a Fourier series (where the derivative with respect to
L is properly taken to guarantee that g (L) depends only on L) while also having the “hidden” n
dependence properly accounted for (so that the derivative with respect to n is correct). Of course,
for a general sum, we would use Equation 1 with x = 0 and L = 1, such that g (0) =

∑∞
n=−∞ cn.

Of course, if only the n is present in cn, then we generally represent a series. It seems unclear to
me whether for a given n dependence if there could be multiple L dependences that could give the
same answer for the series defined in terms of the integer variable n once we set L = 1 and x = 0
after taking the derivatives (i.e. solving for g (x = 0)). One idea is to first consider odd functions,
such that the second line of Equation 4 simplifies to solve for cn + n∂cn

∂n + L∂cn
∂L = 0 (note that

this cn here is defined somewhat differently than in the first line of Equation 2, since the integral
bounds are different between Line 1 and Line 2). We will delve deeper into this discussion in future
posts - for now, we will conclude this post by verifying that the first line of Equation 4 is true for a
general power term - g (x) = xs, where s is a positive integer. First, define the falling Pochhammer
Symbol:

(s)m = (s) (s− 1) . . . (s−m+ 1) (5)

where (s)0 = 1 always. The calculation is as follows:
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Having carried out the computation, we can now simplify and make n an integer, then combine
into Equation 4:
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as expected. This verifies the topic formula for any power series. This concludes this blog post.
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