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Consider the complex Fourier Series coefficient:
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In the last post, we derived the partial differential equation for ¢, by taking the derivative of

Equation 1 with respect to L:
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We verified this PDE for g (z) = x®, where s is a non-negative integer. While this essentially verifies
the PDE for any function expressible as a power series, I'd like to shed more light on the function
cp, in terms of its two variables, n and L. In this post, we will show that though L seems like the
more problematic variable when differentiating Equation 1, it is actually the far more simplistic
and trivial variable to work with. First consider Taylor’s theorem:
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where a is a reference point on the domain of f (z). This equation assumes that f (x) is infinitely
differentiable - we will apply this restriction to g (). Now consider integrand of Equation 1 as a
special case of Equation 3, where a = 0 (this is known as the Maclaurin Series):
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where 7 (s, 2) fo ~le=%dx is the lower incomplete gamma function. As can be seen by Equation

4, the variable that is sophisticated to differentiate is n, not L. To find series for n%%, we use



Equation 4 for h (z) = zg (x) such that R (0) = ( m=1)(0)) (since from Equation 1, the new
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integrand is simply z'¢g (z') e L when differentiating in n). Then, we find:
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The L derivative of Equation 4 is significantly easier:

L@cnzz< L ) g™ (0) v (m + 1,27in)

2min ) (m—1)! 2min

_ i L \" g™+ (0) 5 (m + 2, 2min)
2mwin m! 2min

Meanwhile, the incomplete gamma function can be evaluated as follows:
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Now substituting Equation 7 into Equations 4, Equation 5, and Equation 6, we get:

> G i)
Z QZO (2min)? + 1—gq)! (m+1) (8)
8cn o m m+l (m+1) (0)
B ZQE% 27rqur1 m—i-l )( m+1)

To evaluate the results of these calculations, we will verify that the series calculations are consistent
with the PDE. First, consider the PDE under differentiation in terms of L, setting L = 0 afterwards:
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Taking these derivatives of Equation 8, we get:
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Combining these into Equation 9 and re-indexing the second line to be a sum from ¢ = —1 — k—1,

we get left side equals right side (¢* (0) = g* (0)). These are the Taylor series coefficients for the
general, infinitely differentiable g (z). This concludes this blog post.



