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Consider the complex Fourier Series coefficient:

cn =
1

L

∫ L

0
g
(
x′
)
e−2πinx′

L dx′ (1)

In the last post, we derived the partial differential equation for cn by taking the derivative of
Equation 1 with respect to L:

g (L) = cn + n
∂cn
∂n

+ L
∂cn
∂L

(2)

We verified this PDE for g (x) = xs, where s is a non-negative integer. While this essentially verifies
the PDE for any function expressible as a power series, I’d like to shed more light on the function
cn in terms of its two variables, n and L. In this post, we will show that though L seems like the
more problematic variable when differentiating Equation 1, it is actually the far more simplistic
and trivial variable to work with. First consider Taylor’s theorem:

f (x) =
∞∑
n=0

f (n) (a)

n!
(x− a)n (3)

where a is a reference point on the domain of f (x). This equation assumes that f (x) is infinitely
differentiable - we will apply this restriction to g (x). Now consider integrand of Equation 1 as a
special case of Equation 3, where a = 0 (this is known as the Maclaurin Series):

cn =
1

L

∫ L

0
dx

∞∑
n=0

xn

n!

n∑
m=0

(
n

m

)(
−2πin

L

)n−m

g(m) (0)

=
1

L

∫ L

0
dx

∞∑
m=0

g(m) (0)

m!
xm

∞∑
n=m

(
−2πinx

L

)n−m

(n−m)!

=

∞∑
m=0

g(m) (0)

m!

(
1

L

∫ L

0
dxxme−2πin x

L

)

=
∞∑

m=0

(
L

2πin

)m g(m) (0)

m!

γ (m+ 1, 2πin)

2πin

(4)

where γ (s, z) =
∫ z
0 xs−1e−xdx is the lower incomplete gamma function. As can be seen by Equation

4, the variable that is sophisticated to differentiate is n, not L. To find series for n∂cn
∂n , we use
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Equation 4 for h (x) = xg (x) such that h(m) (0) = m
(
g(m−1) (0)

)
(since from Equation 1, the new

integrand is simply x′g (x′) e−2πinx′
L when differentiating in n). Then, we find:

n
∂cn
∂n

= −
(
2πin

L

) ∞∑
m=1

(
L

2πin

)m g(m−1) (0)

(m− 1)!

γ (m+ 1, 2πin)

2πin

= −
∞∑

m=0

(
L

2πin

)m g(m) (0)

m!

γ (m+ 2, 2πin)

2πin

(5)

The L derivative of Equation 4 is significantly easier:

L
∂cn
∂L

=
∞∑

m=1

(
L

2πin

)m g(m) (0)

(m− 1)!

γ (m+ 1, 2πin)

2πin

=
∞∑

m=0

(
L

2πin

)m+1 g(m+1) (0)

m!

γ (m+ 2, 2πin)

2πin

(6)

Meanwhile, the incomplete gamma function can be evaluated as follows:

γ (s+ 1, z) = −
s−1∑
q=0

zs−q s!

(s− q)!
e−z − s!

(
e−z − 1

)
=⇒ γ (m+ 1, 2πin) = −m!

m−1∑
q=0

(2πin)m−q

(m− q)!

(7)

Now substituting Equation 7 into Equations 4, Equation 5, and Equation 6, we get:

cn = −
∞∑

m=0

m−1∑
q=0

Lm

(2πin)q+1

g(m) (0)

(m− q)!

n
∂cn
∂n

=
∞∑

m=0

m∑
q=0

Lm

(2πin)q
g(m) (0)

(m+ 1− q)!
(m+ 1)

L
∂cn
∂L

= −
∞∑

m=0

m∑
q=0

Lm+1

(2πin)q+1

g(m+1) (0)

(m+ 1− q)!
(m+ 1)

(8)

To evaluate the results of these calculations, we will verify that the series calculations are consistent
with the PDE. First, consider the PDE under differentiation in terms of L, setting L = 0 afterwards:(

g(k) (L)
)
L=0

= (k + 1)

(
∂kcn
∂Lk

)
L=0

+

(
∂k

∂Lk

(
n
∂cn
∂n

))
L=0

(9)

Taking these derivatives of Equation 8, we get:

(k + 1)

(
∂kcn
∂Lk

)
L=0

= − (k + 1)! g(k) (0)

k−1∑
q=0

1

(2πin)q+1

1

(k − q)!(
∂k

∂Lk

(
n
∂cn
∂n

))
L=0

= (k + 1)! g(k) (0)

k∑
q=0

1

(2πin)q
1

(k + 1− q)!

(10)

Combining these into Equation 9 and re-indexing the second line to be a sum from q = −1 → k−1,
we get left side equals right side (gk (0) = gk (0)). These are the Taylor series coefficients for the
general, infinitely differentiable g (x). This concludes this blog post.
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