Title: The Fourier PDE **Author:** Josh Myers

June 30, 2025

Consider the complex Fourier Series coefficient:

$$c_n = \frac{1}{L} \int_0^L g(x') e^{-2\pi i n \frac{x'}{L}} dx'$$
(1)

In the last post, we derived the partial differential equation for c_n by taking the derivative of Equation 1 with respect to L:

$$g(L) = c_n + n \frac{\partial c_n}{\partial n} + L \frac{\partial c_n}{\partial L}$$
 (2)

We verified this PDE for $g(x) = x^s$, where s is a non-negative integer. While this essentially verifies the PDE for any function expressible as a power series, I'd like to shed more light on the function c_n in terms of its two variables, n and L. In this post, we will show that though L seems like the more problematic variable when differentiating Equation 1, it is actually the far more simplistic and trivial variable to work with. First consider Taylor's theorem:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$
 (3)

where a is a reference point on the domain of f(x). This equation assumes that f(x) is infinitely differentiable - we will apply this restriction to g(x). Now consider integrand of Equation 1 as a special case of Equation 3, where a = 0 (this is known as the Maclaurin Series):

$$c_{n} = \frac{1}{L} \int_{0}^{L} dx \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{m=0}^{n} \binom{n}{m} \left(-\frac{2\pi i n}{L}\right)^{n-m} g^{(m)}(0)$$

$$= \frac{1}{L} \int_{0}^{L} dx \sum_{m=0}^{\infty} \frac{g^{(m)}(0)}{m!} x^{m} \sum_{n=m}^{\infty} \frac{\left(-\frac{2\pi i n x}{L}\right)^{n-m}}{(n-m)!}$$

$$= \sum_{m=0}^{\infty} \frac{g^{(m)}(0)}{m!} \left(\frac{1}{L} \int_{0}^{L} dx \, x^{m} e^{-2\pi i n \frac{x}{L}}\right)$$

$$= \sum_{m=0}^{\infty} \left(\frac{L}{2\pi i n}\right)^{m} \frac{g^{(m)}(0)}{m!} \frac{\gamma(m+1, 2\pi i n)}{2\pi i n}$$
(4)

where $\gamma(s,z) = \int_0^z x^{s-1} e^{-x} dx$ is the lower incomplete gamma function. As can be seen by Equation 4, the variable that is sophisticated to differentiate is n, not L. To find series for $n \frac{\partial c_n}{\partial n}$, we use

Equation 4 for h(x) = xg(x) such that $h^{(m)}(0) = m(g^{(m-1)}(0))$ (since from Equation 1, the new integrand is simply $x'g(x')e^{-2\pi i n\frac{x'}{L}}$ when differentiating in n). Then, we find:

$$n\frac{\partial c_{n}}{\partial n} = -\left(\frac{2\pi i n}{L}\right) \sum_{m=1}^{\infty} \left(\frac{L}{2\pi i n}\right)^{m} \frac{g^{(m-1)}(0)}{(m-1)!} \frac{\gamma(m+1, 2\pi i n)}{2\pi i n}$$

$$= -\sum_{m=0}^{\infty} \left(\frac{L}{2\pi i n}\right)^{m} \frac{g^{(m)}(0)}{m!} \frac{\gamma(m+2, 2\pi i n)}{2\pi i n}$$
(5)

The L derivative of Equation 4 is significantly easier:

$$L\frac{\partial c_n}{\partial L} = \sum_{m=1}^{\infty} \left(\frac{L}{2\pi i n}\right)^m \frac{g^{(m)}(0)}{(m-1)!} \frac{\gamma(m+1, 2\pi i n)}{2\pi i n}$$

$$= \sum_{m=0}^{\infty} \left(\frac{L}{2\pi i n}\right)^{m+1} \frac{g^{(m+1)}(0)}{m!} \frac{\gamma(m+2, 2\pi i n)}{2\pi i n}$$
(6)

Meanwhile, the incomplete gamma function can be evaluated as follows:

$$\gamma(s+1,z) = -\sum_{q=0}^{s-1} z^{s-q} \frac{s!}{(s-q)!} e^{-z} - s! \left(e^{-z} - 1\right)$$

$$\implies \gamma(m+1,2\pi in) = -m! \sum_{q=0}^{m-1} \frac{(2\pi in)^{m-q}}{(m-q)!}$$
(7)

Now substituting Equation 7 into Equations 4, Equation 5, and Equation 6, we get:

$$c_{n} = -\sum_{m=0}^{\infty} \sum_{q=0}^{m-1} \frac{L^{m}}{(2\pi i n)^{q+1}} \frac{g^{(m)}(0)}{(m-q)!}$$

$$n \frac{\partial c_{n}}{\partial n} = \sum_{m=0}^{\infty} \sum_{q=0}^{m} \frac{L^{m}}{(2\pi i n)^{q}} \frac{g^{(m)}(0)}{(m+1-q)!} (m+1)$$

$$L \frac{\partial c_{n}}{\partial L} = -\sum_{m=0}^{\infty} \sum_{q=0}^{m} \frac{L^{m+1}}{(2\pi i n)^{q+1}} \frac{g^{(m+1)}(0)}{(m+1-q)!} (m+1)$$
(8)

To evaluate the results of these calculations, we will verify that the series calculations are consistent with the PDE. First, consider the PDE under differentiation in terms of L, setting L=0 afterwards:

$$\left(g^{(k)}(L)\right)_{L=0} = (k+1)\left(\frac{\partial^k c_n}{\partial L^k}\right)_{L=0} + \left(\frac{\partial^k}{\partial L^k}\left(n\frac{\partial c_n}{\partial n}\right)\right)_{L=0} \tag{9}$$

Taking these derivatives of Equation 8, we get:

$$(k+1)\left(\frac{\partial^{k} c_{n}}{\partial L^{k}}\right)_{L=0} = -(k+1)! g^{(k)}(0) \sum_{q=0}^{k-1} \frac{1}{(2\pi i n)^{q+1}} \frac{1}{(k-q)!}$$

$$\left(\frac{\partial^{k}}{\partial L^{k}} \left(n\frac{\partial c_{n}}{\partial n}\right)\right)_{L=0} = (k+1)! g^{(k)}(0) \sum_{q=0}^{k} \frac{1}{(2\pi i n)^{q}} \frac{1}{(k+1-q)!}$$
(10)

Combining these into Equation 9 and re-indexing the second line to be a sum from $q = -1 \rightarrow k - 1$, we get left side equals right side $(g^k(0) = g^k(0))$. These are the Taylor series coefficients for the general, infinitely differentiable g(x). This concludes this blog post.