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Let’s analyze the plot made by the parameterized functions:

x (t) = cos

(
2π

(
t

2π

)p)
y (t) = sin

(
2π

(
t

2π

)z) (1)

Before investigating the problem and the plot, let’s solve for y (t) in terms of x (t).

y (t) = sin

(
2π

(
arccos (x (t))

2π

) z
p

)
(2)

Thus, given that −1 ≤ x (t) ≤ 1, the value of y (t) depends only on the fraction z
p . Plotting this

function with z
p = 2.8343 (will explain this decision soon), we find: I will explain quickly how this

Figure 1: Geometry we’d like to analyze.
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curve is produced. First, define:

y1 (t) = sin

(
2π

(
arccos (x (t))

2π

) z
p

)

y2 (t) = sin

(
2π

(
2π − arccos (x (t))

2π

) z
p

) (3)

where y2 and y1 differ because the inverse cosine ranges only from 0 to π. Now the question can be
posed: for what value of z

p is the area contained between y2 and y1 equal on each side of the POI.
Put succinctly, what value of z

p = r0 is the following integral 0?

I1 (r0) =

∫ 1

−1
dx (t)

(
sin

(
2π

(
2π − arccos (x (t))

2π

)r0)
− sin

(
2π

(
arccos (x (t))

2π

)r0))
= 0 (4)

It turns out that through numerics, r0 = 2.8343, just as we plotted above! So the plot above shows
approximately the curve where the two areas (one on each side of the POI) have equal area. Now
that we’ve come this far, we can have more fun with similar problems related to this geometry. For
example, what is the value of the following integral?

I2 (r0) =

∫ 1

−1
dx (t)

1

sin
(
2π
(
2π−arccos(x(t))

2π

)r0)
− sin

(
2π
(
arccos(x(t))

2π

)r0) =

∫ 1

−1
dx (t) q (x (t)) (5)

This integral can only be understood in terms of the Cauchy Principal Value. Evaluated numerically,
we carry out the following problem:

I2 (r0) = lim
∆x→0

(∫ x0−∆x

−1+∆x
dx (t) q (x (t)) +

∫ 1−∆x

x0+∆x
dx (t) q (x (t))

)
(6)

Numerically, this value is found to converge for ∆x as small as 10−10, where x0 (the POI) is found
using a root finding algorithm on Equation 4. Knowing this, approximately, I2 (r0) = 1.2541, found
computationally. Now, what value of z

p maximizes the value of I2? This is also found numerically,
by applying Equation 6 with a linear search in the value of the z

p as a single parameter optimization
problem. It turns out that I2 (r) increases steadily as z

p increases (see Figure 2 on the next page).
There is one more interesting question I’d like to demonstrate, that is the following - what values
of z

p gives local maxima for the total area contained within the curve represented by Equation 3:

I3 (r) =

∫ 1

−1
dx (t) | y2 (x (t))− y1 (x (t)) | (7)

Figure 3 corresponds to the value of I3 (r) = A, where r = z
p . The y vs. x curves for the maxima

(and the unit circle, z
p = 1) are plotted in Figure 4. The y vs. x curves for the minima are plotted

in Figure 5.

Figure 4 and Figure 5 are interesting because they show snapshots of the evolution of the parameterized
curve in Equation 3 for z

p = r, r > 0. Based on my search of the one-dimensional function
space, beyond the maximum point with the highest z

p ( zp ≈ 4.556), the function seems to decrease
monotonically with increasing z

p , approaching 0. It is interesting that there is a value of z
p ≈ 0.98

that has slightly greater area contained in the curve than the z
p = 1, the unit circle. This concludes

this blog post.
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Figure 2: The result of scaling z
p on the parameterized curve represented by Equation 3.

Figure 3: The variation of I3 (r) as one varies z
p from 0 to 10.
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Figure 4: Equation 3 plots of the local maxima points of I3 (r) from Figure 3.

Figure 5: Equation 3 plots of the local minima points of I3 (r) from Figure 3.
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