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An identity for the logarithmic power series has been found as:
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where
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]
is a Stirling number of the first kind. Now differentiate Equation 1:
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The coefficients must be equal for each power (for all combinations in which m+ r = n, leaving a
series identity for the Stirling numbers of the first kind:[n
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This identity is given on the Wikipedia page for the Stirling Numbers of the First Kind. This
identity is particularly useful because it relates the nth Stirling Numbers of order k in terms of
only the Stirling Numbers of lower order (k − 1) and lower (m− 1). This identity is useful also
because it expresses the generation of the Stirling Numbers in terms of Stirling Numbers divided
by the factorial: [
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where
∑n

k=0

[
n
k

]
= n!, and thus
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n
k

]
≤ n!, since
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n
k

]
≥ 1 for all n and k. Thus, Equation 4 can be

useful to compute the Stirling Numbers of the first kind in terms in terms of 0 <
[nk ]
n! < 1. In this

way, there are strict bounds on the values generated by Equation 4, which is useful when evaluating
the Stirling Numbers of the First Kind for Equation 1, which includes the factorial divisor. As well,
as we will see next, Equation 3 is quite useful for generating explicit expressions for the Stirling
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Numbers of the First Kind, since the kth solution can be found in terms of the previous (k − 1)th
solutions. We start with k = 0 solution. When k = 0, the only non-zero term is for n = 0. Thus,[n

0

]
= δn0 (5)

Now, Equation 3 can be used to solve for k = 1 case in terms of the k = 0 case:[n
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(6)

Again, Equation 3 can be used to solve for the k = 2 case in terms of the k = 1 case. Here, the
harmonic numbers start to be relevant, and as we will see, lead to an efficient representation of
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in terms of the Harmonic Numbers:[n

2

]
= (n− 1)!

n∑
m=2

1

(m− 1)

= (n− 1)!
n−1∑
m=1

1

m

= (n− 1)!Hn−1

(7)

This sum identity can used with a proof by induction to attain higher k solutions. I have found up
to k = 4 in the literature. The solutions that I have found in the literature are:[n
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The solutions I have worked out from induction are:[n
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These expressions of the Stirling Numbers of the First Kind were found through assuming that the
solution contained a series of all combinations of Harmonic Numbers that correspond to powers
summing to k − 1. The solution is scaled by a factor of 1

(k−1)! . This scaling factor entails that

the series of powers of the Harmonic numbers (and its higher order generalizations, namely H
(r)
n =

2



∑n
i=1

1
kr ) must equal 1 when n = k, since the fraction of factorials cancels. This corresponds nicely

to the behaviour that we expect to see from these numbers, since
[
n
n

]
= 1 for all positive integer

n. Then, integer coefficients are applied to these series terms as a linear combination. The goal of
the inductive proof is to solve for the coefficients that allow for the inductive step to be true. We
will then show that the coefficients solved by the inductive step are also naturally the coefficients
needed to verify the base case, that is that the series of powers of the Harmonic Numbers is 1 when
n = k.

The relationships given in Equation 9 are remarkable in many respects. First off, they are relationships
involving always non-integer Harmonic Numbers that are written as a linear combination with
constant integer coefficients so that they always produce the integer result required by the Stirling
Numbers of the First Kind. Secondly, there are patterns that arise that may allow for conjecture
that may contribute to a complete set of expressions for any positive integer k (where clearly n ≥ k).

For example, the term Hk−1
n−1 seems to always have coefficient equal to unity. The term H

(k−1)
n−1 seems

to always have coefficient equal to (−1)k−2 (k − 2)!. As well, the sum of the absolute value of the
coefficients for a given solution seems to always equal (k − 1)!, and the sum of the coefficients seems
to always equal 0. There likely exists other such identities, but the problem with generalizing these
ideas to the kth order Stirling Number is really that new combinations (and thus new coefficients)
of Harmonic Numbers arise that have exponent powers that sum to k − 1. It seems similar to a
partitions problem in this respect, and as shown below, is strongly related to the binomial theorem
during the inductive step.

Having made these notes, it is worth carrying out an example to illustrate the execution of the
proof by induction for a relatively simple case. Take
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]
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The inductive step starts as follows:[
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which is a defining identity for the Stirling Numbers of the First Kind (illustrated in this case for k =

4). This identity is given on Wikipedia as a recursive relation for general k (
[
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= n
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+
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]
)

Now we will show how to solve for the coefficients. We propose the following hypothesis:[n
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which is a linear combination of all possible combinations of Harmonic Numbers that sum to the
power k − 1 = 3. Now, we wish to show that:[
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where the second to third line is the critical step. Now we apply the following identities:

Hn−1 = Hn − 1

n

H
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After substituting in the second line of Equation 13 and distributing the terms / making cancellations,
we arrive at the result in the third line of Equation 13 if a = 1, b = −3, and c = 2.

This method can be applied for larger k by using linear algebra to write out a matrix for an
overdetermined system of equations arising from the above method, where each “type” of term in
the distributed calculation is represented by a row in the matrix. All of these rows must cancel
with the proper solution to the integer coefficients as they aren’t a part of the result in the third
line of Equation 13. It is worthwhile to write out the entire overdetermined matrix to ensure that
when the solution is found on inversion, all equations adhere and we have complete cancellation of
each of the “extra terms”. Furthermore, we write the third power terms from Equation 13 as the
left side matrix A, where each column corresponds to a coefficient a, b, c... etc. in the solution
expression. Then, the right side is comprised of a vector as the second power terms from Equation
13 - call it w. Then, inverting A and applying it to the right side gives the solution vector x:

x = A−1w (15)

All solutions found in Equation 9 were found through this linear algebra method. It seems nearly
certain that higher solutions could be found through this method, though obviously keeping track
of all terms arising from distributing all combinations of powers of Harmonic Numbers to the k− 1
becomes a challenging but possible task.

The matrix A for the example above would be:

A4 =


−3 0 0
3 −1 0
−1 1 −1
0 −1 0



w4 =


−3
6
−6
3


(16)

This concludes my first post on the blog forum.
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