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This short post will highlight an interesting observation I’ve made recently while studying Fourier
series. Consider the general function f (x):
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where −L
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2 . As observed in my last post on truncation of infinite series, cn is trivially:
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Now substituting Equation 2 into Equation 1, then using the result from the “Finite Sums of
Complex Numbers” blog post, we find the following:
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where in the square brackets we highlight a function that behaves similarly to the Dirac Delta
function, δ (x− x′). However, this function is not a Dirac Delta, since although it goes to ∞ as
x′ → x, its value is not 0 everywhere else. Rather, the function has an infinite frequency periodic
term, meaning that when integrating it with a “reasonable” function, we should attain an answer
that is 0. After all, in any neighbourhood around x′ = xo, we see an infinite number of peaks and
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valleys contributed from the periodic term, meaning that the values from the multiplying functions
get averaged to 0. However, when x′ → x, we get a diverging behaviour from the cotangent
function, which leads to the infinite behaviour that is characteristic to the typical delta function.
Furthermore, we get a function that integrates to 0 everywhere except where x′ → x (where the
function instead goes to infinity). Thus, it is unsurprising that we get the f (x) as expected at the
end of the integration. I have confirmed this observation numerically.

Now I will outline my plan for future posts and give some tidbits that I believe are useful for
uncovering what I seek. I aim to establish a differential equation capable of discerning what f (x)
must be in order to lead to some Fourier series. That is, given some cn = g (n), what is the f (x)
needed to produce the g (n) for all n? It is clear that knowing the integral of f (x) multiplied by
the Fourier complex exponential (for all n) is enough to determine f (x) fully in the context of
a Fourier series. Of course, the idea of knowing the infinite number of integrals is key, since it is
clear that there are an infinite number of f (x) that produce the desired g (no) for a single n = no.
However, this is the extent that I have gotten for this problem thus far. To complete this post, I
will derive a well-known result: the Fourier Series of the Bernoulli polynomials of order n. This will
be useful when using the Euler-Maclaurin formula on the general Fourier series in a future post.
Bernoulli polynomials can be defined by the of dBn

dx = nBn−1 (x) (with B1 (0) = −1
2 and B1 (1) =

1
2

and B0 (x) = 1). In general, Bn (0) = Bn (1) = Bn for n ≥ 2, where Bn is the Bernoulli number,
defined via a variety of relations. Knowledge of the Bernoulli number and the differential relation
dBn
dx = nBn−1 (x) is enough to fully define the Bernoulli polynomials. Now that we have established
the relation, let’s calculate the Fourier Series in question using iterative integration by parts:
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The Bernoulli Polynomials are thus:
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where the infinite sum does not include m = 0 (it vanishes, since Bk (0) = Bk (1) for k ≥ 2). This
sum holds for 0 < x < 1. The interesting possibility of n → ∞ is:

lim
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The Bernoulli polynomials goes to trigonometric terms as n → ∞. This concludes this blog post.
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