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This short post will highlight an interesting observation I’ve made recently while studying Fourier
series. Consider the general function f (z):
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where =& < z < . As observed in my last post on truncation of infinite series, ¢, is trivially:
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Now substituting Equation 2 into Equation 1, then using the result from the “Finite Sums of
Complex Numbers” blog post, we find the following;:

n=—oo 2
1 % G i (r—a’
= L/é da’ f (2') nz_:oo (62 z( ))
L
2

da'f (') <1+2Z (cos <2m( - ’))))
_ i/_g da'f () Jim <sin (27rN ) cot ( z — x’)))

e (z —a') (z —a')
_ . - / / .
_]\}gnooL/_édxf(z:)sm<27rN 17 >Cot<7r i3 >
sin (2#N@) cot (W@)
L

L
= 2dxf<>

where in the square brackets we highlight a function that behaves similarly to the Dirac Delta
function, 6 (x — z’). However, this function is not a Dirac Delta, since although it goes to oo as
x' — x, its value is not 0 everywhere else. Rather, the function has an infinite frequency periodic

term, meaning that when integrating it with a “reasonable” function, we should attain an answer
that is 0. After all, in any neighbourhood around z’ = z,, we see an infinite number of peaks and



valleys contributed from the periodic term, meaning that the values from the multiplying functions
get averaged to 0. However, when 2/ — x, we get a diverging behaviour from the cotangent
function, which leads to the infinite behaviour that is characteristic to the typical delta function.
Furthermore, we get a function that integrates to 0 everywhere except where 2/ — x (where the
function instead goes to infinity). Thus, it is unsurprising that we get the f (z) as expected at the
end of the integration. I have confirmed this observation numerically.

Now I will outline my plan for future posts and give some tidbits that I believe are useful for
uncovering what I seek. I aim to establish a differential equation capable of discerning what f ()
must be in order to lead to some Fourier series. That is, given some ¢, = g (n), what is the f (x)
needed to produce the g (n) for all n? It is clear that knowing the integral of f (x) multiplied by
the Fourier complex exponential (for all n) is enough to determine f (x) fully in the context of
a Fourier series. Of course, the idea of knowing the infinite number of integrals is key, since it is
clear that there are an infinite number of f (z) that produce the desired g (n,) for a single n = n,.
However, this is the extent that I have gotten for this problem thus far. To complete this post, 1
will derive a well-known result: the Fourier Series of the Bernoulli polynomials of order n. This will
be useful when using the Euler-Maclaurin formula on the general Fourier series in a future post.
Bernoulli polynomials can be defined by the of dd% =nB,_1 (z) (with B; (0) = —3 and B; (1) = 1
and By (z) = 1). In general, B, (0) = B, (1) = B, for n > 2, where B,, is the Bernoulli number,
defined via a variety of relations. Knowledge of the Bernoulli number and the differential relation
4By — pB, 4 (z) is enough to fully define the Bernoulli polynomials. Now that we have established
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the relation, let’s calculate the Fourier Series in question using iterative integration by parts:
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The Bernoulli Polynomials are thus:
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where the infinite sum does not include m = 0 (it vanishes, since By (0) = By (1) for k > 2). This
sum holds for 0 < z < 1. The interesting possibility of n — oo is:
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The Bernoulli polynomials goes to trigonometric terms as n — oo. This concludes this blog post.



