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In the previous post, I showed the value of the following integral:
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using the following identity:
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In this post, using the same identity, we will find the value of the following integral:
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Through using Equation 2 four times, carrying out the integration in ¢ on each term, then evaluating
the limits, we get the following result:
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where ¢, () is the polygamma function, ¢ (s) is the Riemann Zeta function, F, is the hypergeometric
function and Fjo is the regularized hypergeometric function. Mathematica and Wolfram Alpha both

tap out if asked to solve the Equation 3 directly. However, with the help of the algorithm described
in the last post, this result was found - I have checked this numerically!

However, there are many logarithmic integrals I have still not succeeded in solving, such as:
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Wolfram Alpha gives a solution for I3 that is tremendously long (certainly too long to write here)
- the algorithm that I employed to attain I; does not seem to work for I» for some reason. For



I3, matters are complicated by presence of the polylogarithm function (rather than simply the
logarithm). However, I do have some hopes of solving these one in future posts. It is noteworthy
that for x = 1, I3 is the following, which is solveable through expanding both polylogarithms in
Equation 5, integrating to achieve the complete beta function, then using Mathematica to solve

the double sum using the identity B (p,q) = %:
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The difficulty with solving I3 for the general z is that to get the Lis in terms of the logarithm,
more integrals must be implemented, as can be seen in the Equation below:

Liy (t) = —/0 S Gt (7)
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Thus, more integral evaluations must be carried out, and in order to evaluate the integral in terms
of t, the order of integration must be interchanged, as t is a bound on the z integral. This is not
especially a problem on its own (integration order can be switched), but it leads to enough integrals
that I have not been able to find the closed form solution for I3 (x) as of yet. This concludes this
blog post.



