Title: Variations on the Euler-Maclaurin Formula **Author:** Josh Myers

July 1, 2025

In this post, I will discuss a variation on a simple order 2 Euler-Maclaurin Formula:

$$\sum_{y=1}^{N} f(y) = \int_{1}^{N} dx f(x) + \frac{f(N) + f(1)}{2} + \frac{1}{12} \left(f'(N) - f'(1) \right) - \frac{1}{2} \int_{1}^{N} dx_0 P_2(x_0) f''(x_0)$$
 (1)

where $P_2(x_0)$ is the second periodic Bernoulli Polynomial, which is defined as follows:

$$P_2(x_0) = B_2(x_0 - |x_0|) \tag{2}$$

where $B_2(x_0) = x_0^2 - x_0 + \frac{1}{6}$ is the second Bernoulli polynomial. From this, it seems from Equation 1 that we have traded a sum in f for a sum of an integral involving f. From Wikipedia, it is stated that for R_p as below (Equation 1 is for p = 2), there is a useful bounding function:

$$R_{p} = (-1)^{p+1} \int_{1}^{N} dx_{0} \frac{P_{p}(x_{0})}{p!} f^{(p)}(x_{0})$$

$$|R_{p}| < \frac{2\zeta(p)}{(2\pi)^{p}} \int_{1}^{N} dx_{0} |f^{(p)}(x_{0})|$$
(3)

For algorithmic simplicity, let $F_0''(x_0) = -\frac{1}{2}f''(x_0)$. Though the integral in the second line of Equation 3 cannot be nicely done by hand (except in special cases where all zeroes of the pth derivative of f are known), it can be done computationally for many functions to help give an idea of the order of magnitude of the remainder associated with R_p when carrying out Equation 1. Note that $\zeta(p)$ in Equation 3 is the Riemann Zeta function.

It is curious to consider the benefit of applying the Euler-Maclaurin formula *iteratively* for the following sum which can be expressed as R_2 :

$$R_2 = \sum_{q_0=1}^{N-1} \int_{q_0}^{q_0+1} dx_0 B_2(x_0 - q_0) F_0''(x_0)$$
(4)

such that Equation 1 is applied for the sum from $q_0 \in \mathbb{W}$ between 1 and N-1 within R_2 . This application would lead to a remainder term $R_2^{(1)}$ within R_2 .

$$R_{2} = \int_{1}^{N-1} dx_{1} \int_{x_{1}}^{x_{1}+1} dx_{0} B_{2}(x_{0} - x_{1}) F_{0}''(x_{0}) + \frac{1}{2} \int_{N-1}^{N} dx_{0} B_{2}(x_{0} - (N-1)) F_{0}''(x_{0})$$

$$+ \frac{1}{2} \int_{1}^{2} dx_{0} B_{2}(x_{0} - 1) F_{0}''(x_{0}) + \frac{1}{72} \left(\left(F_{0}''(N) - F_{0}''(N-1) \right) - \left(F_{0}''(2) - F_{0}''(1) \right) \right)$$

$$- \frac{1}{6} \left(\int_{N-1}^{N} dx_{0} B_{1}(x_{0} - (N-1)) F_{0}''(x_{0}) - \int_{1}^{2} dx_{0} B_{1}(x_{0} - 1) F_{0}''(x_{0}) \right) + R_{2}^{(1)}$$

$$(5)$$

where $R_2^{(1)}$ is:

$$R_2^{(1)} = \int_1^{N-1} \mathrm{d}x_1 P_2(x_1) F_1''(x_1) = \sum_{q_1=1}^{N-2} \int_{q_1}^{q_1+1} \mathrm{d}x_1 B_2(x_1 - q_1) F_1''(x_1)$$
 (6)

where:

$$F_1''(x_1) = -\frac{1}{12} \left(F_0'''(x_1+1) - F_0'''(x_1) \right) + \frac{1}{2} \left(F_0''(x_1+1) + F_0''(x_1) \right) - \left(F_0'(x_1+1) - F_0'(x_1) \right)$$
(7)

where F_1'' comes from taking two derivatives with respect to x_1 of $\int_{x_1}^{x_1+1} dx_0 B_2(x_0-x_1) F_0''(x_0)$ (using Leibniz Integral Rule and $\frac{\partial B_n(x-x_2)}{\partial x_2} = -nB_{n-1}(x-x_2)$). These formula can be extended through generalizing a function:

$$F_k''(x_k) = -\frac{1}{2} \sum_{w=0}^{2} (-2)_{2-w} \left(B_w(1) F_{k-1}^{(w+1)}(x_k+1) - B_w(0) F_{k-1}^{(w+1)}(x_k) \right)$$
(8)

This generalized function $F''_k(x_k)$ can be used to rewrite the sum of $R_2^{(z)}$ by:

$$\sum_{y=1}^{N} f(y) = \int_{1}^{N} dx f(x) + \frac{f(N) + f(1)}{2} + \frac{1}{12} \left(f'(N) - f'(1) \right)$$

$$+ \sum_{k=0}^{N-3} \int_{1}^{N-k-1} dx_{k+1} \int_{x_{k+1}}^{x_{k+1}+1} dx_{k} B_{2} \left(x_{k} - x_{k+1} \right) F_{k}''(x_{k})$$

$$+ \frac{1}{2} \int_{N-k-1}^{N-k} dx_{k} B_{2} \left(x_{k} - (N-k-1) \right) F_{k}''(x_{k}) + \frac{1}{2} \int_{1}^{2} dx_{k} B_{2} \left(x_{k} - 1 \right) F_{k}''(x_{k})$$

$$+ \frac{1}{72} \left(\left(F_{k}''(N-k) - F_{k}''(N-k-1) \right) - \left(F_{k}''(2) - F_{k}''(1) \right) \right)$$

$$- \frac{1}{6} \left(\int_{N-k-1}^{N-k} dx_{k} B_{1} \left(x_{k} - (N-k-1) \right) F_{k}''(x_{k}) - \int_{1}^{2} dx_{k} B_{1} \left(x_{k} - 1 \right) F_{k}''(x_{k}) \right)$$

$$+ \int_{1}^{2} dx_{N-2} B_{2} \left(x_{N-2} - 1 \right) F_{N-2}''(x_{N-2})$$

This elaborate formula (arrived at through relatively simple means) allows for us to begin to evaluate sums in a different way. It is perhaps too much to wish that we may find any sum easier through employing this formula. However, I find the following interesting for future investigation:

- Use this formula to attempt to evaluate a finite sum. This may provide interesting results to consider.
- Consider the idea of an infinite sum, where $N \to \infty$. Once such a sum has been evaluated, we can then consider an intractable one.
- Analyse the outcome of the Equation 8 for various starting f(y), considering in particular the evolution of the inequality in Equation 3 as k progressively increases.

It will be interesting to consider these ideas in future posts. I encourage to reader to do out the calculations that I have carried out above themselves to understand the algorithmic definition of F_k'' that I recommend. This concludes this blog post.