
Title: Observations of Logarithmic Integrals

Author: Josh Myers

June 17, 2025

In a previous post on this blog, I have investigated the solution of the following integral:

Ia,b =

∫ 1

0
lna (x) lnb (1− x) dx (1)

Observe that the following limit corresponds to a function of the logarithmic power:

lim
r→0

(
xr − 1

r

)
= ln (x) (2)

This statement is true due to application of L’Hopital’s Rule. Now imagine that one could exchange
the order of the limit and integration. Then one would obtain a simple function to integrate and
then limit for an expression of Ia,b. It turns out that one can very often (and potentially always, if
one examines the dominated convergence theorem) exchange the order of integration and limiting
in this context for the logarithmic function. Now consider the following integral:

I1 (x) =

∫ x

0
dt ln

(
x− t

1− t

)
ln2 (1− t) (3)

for x ≤ 1. This is a fairly intimidating integral, and requesting a solution from Mathematica or
some other solver yields an expression that is very long an unconcise. However, using the exchange
of limits and integration, we can re-express I (x) as the following:

I1 (x) = lim
p→0

lim
r1→0

lim
r2→0

1

p r1 r2

∫ x

0

((
x− t

1− t

)p

− 1

)
((1− t)r1 − 1) ((1− t)r2 − 1) (4)

As can be seen, the resultant integral factors out into 8 terms. Carrying out integration on each
term, then evaluating each limit on the full integrated result multiplied by 1

p r1 r2
yields a relatively

short result composed of sophisticated hypergeometric functions:

I1 (x) = x
(
(−γ + ln (x)) F̃

(0,2,0,0)
2,1 (1, 0; 2;x) + F̃

(0,2,1,0)
2,1 (1, 0; 2;x) + F̃

(0,3,0,0)
2,1 (1, 0; 2;x)

)
(5)

where γ is the Euler-Mascheroni constant and F̃
(m,n,s,v)
2,1 (a, b; c;x) is the derivatives of the regularized

Gauss hypergeometric function, defined as:

F̃
(m,q,s,v)
2,1 (a, b; c;x) =

∂m

∂am
∂q

∂bq
∂s

∂cs
∂v

∂xv

(
1

Γ (c)

∞∑
n=0

(a)n (b)n
(c)n

xn

n!

)
(6)

where the derivatives must be taken before evaluating the values of a, b, c, and x. This example
where Mathematica has been guided towards a compact answer is particularly interesting as the
size of the problem grows. Some general notes about implementing this algorithm are:
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� When evaluating the integral in Mathematica, it can be helpful to expand the problem and
integrate each term separately. This seems to be necessary to speed up the computation
process - perhaps Mathematica gets confused about how to deal with all the terms at once?

� When evaluating the limits after integration, make sure to add the entire expansion (each
integrated term) together before taking the limits - if this is not done, then the limits will
produce undefined answers (the integrated terms cancel to produce the correct answer when
the limit is done on all the terms).

� When carrying out the limits, there are times when Mathematica finds evaluating the written
limit (the integrated terms divided by the variable) as faster, while there are times (such
as in Equation 5) where the limit is computationally faster if you take the derivative of the
sum of the integrated terms with respect to the limit variable and then evaluate that limit
(implementing L’Hopital’s Rule).

This algorithm is quite efficient, if a bit cumbersome to enter into Mathematica when integrating
each term. However, it leads to quite compact results that are easier to present to readers, as the
hypergeometric function provides a sophisticated way of representing these challenging integrals.
This algorithm is also quite general, as many integrals of integer powers of the natural logarithm
with many styles of arguments can be evaluated. I encourage you to try the algorithm described
in this demonstration blog post yourself - remember to make one variable for each logarithm! This
concludes this blog post.
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