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Consider the following fractional calculus formulas, the second one courtesy of Podlubny:

(Jαf) (x) =
1

Γ (α)

∫ 1

0
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(1)

Now if we apply the second line of Equation 1 to the first line of Equation 1, then we get:

f (x) = α

∫ 1

0
dt (1− t)α−1
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This formula is particularly interesting, as the right side must be independent of α for a general
function f (since the left side is independent of α), though there is no obvious way to simplify and
cancel the α dependence. Now we can show some very interesting results. Start with f (u) = e−u2

,
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, where F̃22 is the regularized hypergeometric

function. This means we can isolate for the sum:
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(3)

This means that independent of the value of α, the sum is e−x2
. Now if we expand in powers of

x2, we get:
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Equating powers of −x2, we get:(
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which is true for all integers n > 0 and real numbers 0 ≤ α ≤ 1. Now it is also true that if we
integrate Equation 5 with respect to α from 0 to 1, then we ought to get no change in the right side
and a change depending on n and j on the left side. If we do this integration before integrating in
t and summing in j, we get the following:

∫ 1

0
dt

 ln (1− t) + t
1−t

ln2 (1− t)
f (xt) +

∞∑
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j
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f (j) (xt) γ (k + 3,− ln (1− t))
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 = f (x) (6)

where γ is the upper incomplete gamma function, and
[
j
k+1

]
is the unsigned Stirling Numbers of

the first kind. Evidently, there is utility and simplification that comes with incorporating α into
the formula. In the next post, we will explore a plethora of relationships that can be derived from
these calculations. This concludes this blog post.
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