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While examining integrals of the Riemann Zeta function along the real number line (such as the
Fourier Transform), I came across some very useful methods to test for the convergence of a series
containing logarithms as part of its coefficients. For example, for s = σ + it for t = 0 and σ > 1,
we have: ∫ ∞

1
(ζ (σ)− 1) dσ =

∞∑
n=2

∫ ∞

1
dσ

1

nσ

=
∞∑
n=2

∫ ∞

1
dσe−σ ln(n)

=

∞∑
n=2

1

n ln (n)

(1)

I had for long held the (ignorant) view that any sum that proceeds more slowly than the harmonic
series (

∑∞
n=1

1
n) must converge as an infinite series. Certainly, anything that increases faster than

the harmonic series will diverge. But, it turns out that it is well known (at least in general
mathematical communities, rather than the engineering physics communities that I have come
from) that there is no slowest converging or slowest diverging sum, and indeed there is no defined
boundary between convergence and divergence. This is well exemplified in the late Walter Rudin’s
book “Principles of Mathematical Analysis”. This idea is well demonstrated through the following
example I found on the worldwide web. All of the following sums diverge, increasingly more slowly:

dk1 =
∞∑
n=k

1

n

dk2 =
∞∑
n=k

1

n ln (n)

dk3 =

∞∑
n=k

1

n ln (n) ln (ln (n))

dk4 =

∞∑
n=k

1

n ln (n) ln (ln (n)) ln (ln (ln (n)))

(2)

Assuming that k is chosen such that dn is well defined in the sense of the logarithm (no negative
arguments - all terms remain real). We will see soon enough why the functions in this example
diverge - however, it is clear that if we propose one slowly diverging series, we can always multiply
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each term by an additional logarithm term that will make it diverge even more slowly. On the
contrary, there is also an easy example showing that we can write arbitrarily slower converging
sums by the following:

ck1 =
∞∑
n=k

1

n2

ck2 =
∞∑
n=k

1

n ln2 (n)

ck3 =
∞∑
n=k

1

n ln (n) ln2 (ln (n))

ck4 =

∞∑
n=k

1

n ln (n) ln (ln (n)) ln2 (ln (ln (n)))

(3)

To see why these sums are increasingly slowly diverging or converging, we define Cauchy’s Condensation
Test, which is described on Mathworld at https://mathworld.wolfram.com/CauchyCondensationTest.html.
In this test, if there exists a sequence such that an+1 ≤ an for all n, then

∑∞
n=1 an converges if and

only if
∑∞

k=1 2
ka2k converges. This means that the convergence behaviour of the original series

and Cauchy’s series are equivalent. Cauchy’s series is useful in the case that logarithms occur in
an, since the inputs to the series terms are exponents of 2. In this case, the second line of Equation
2 clearly diverges, since:

∞∑
k=1

2ka2k =

∞∑
k=0

2k

2k ln (2k)
=

∞∑
k=1

1

k ln (2)
(4)

which diverges like the harmonic series. Likewise, the other sums in Equation 2 diverge. Using the
same test, the second line of Equation 3 can be shown to converge, since:

∞∑
k=1

2ka2k =

∞∑
k=0

2k

2k ln2 (2k)
=

∞∑
k=1

1

(k ln (2))2
(5)

which converges in the same way that the Riemann Zeta function converges with argument σ = 2.
This test can be used to show that all sums in Equation 3 converge, albeit increasingly slowly.

Now that we have shown that there is no well-defined “boundary” between convergent and divergent
sums, we will demonstrate an interesting result of integrating Dirichlet Eta function over the real
numbers between 1 < σ < ∞. Based on a similar computational method used for Equation 1, we
can write (where the last line is valid for k ≥ 0):

bk =

∫ ∞

1
dσk

k∏
i=2

∫ ∞

σi

dσi−1 (η (σ1)− 1)

=

∞∑
n=2

∫ ∞

1
dσk

k∏
i=2

∫ ∞

σi

dσi−1

(
(−1)n−1

nσ1

)

=

∞∑
n=2

(−1)n−1

n lnk (n)

(6)

Thus, −
∑∞

k=0
bk
k! =

∑∞
n=2

(
(−1)n e

1
ln(n)

n

)
= 1.59095... according to Mathematica. Interestingly,

this result is within 5% of 2η (2). This concludes this blog post.

2


