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This post follows up on the post I made recently about a variation of the Euler-Maclaurin formula.
That post involved a recursive function definition which is as follows:
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where k ∈ W and F ′′
0 (x) = −1

2f
′′ (x), where f ′′ (x) is the second derivative of the summation

function in the Euler-Maclaurin formalism (see the March 15th 2025 post). To initially study the
progression of this recursive sequence, I substitute f ′′ (x) = ex. The following developments ensue:
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where 7e−19
12 ≈ 0.00233. As can be seen, Fk scales down by a factor of about 500 for every k. From

the previous post, it is well known that:
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Thus, based on the definition that F ′′
0 (x) = −1

2f
′′ (x), we can reformulate this inequality for F ′′
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Note that this expression is only so easy because of ex is everywhere greater than 0, so doing
the integral of the absolute value is not a special problem. Solving for F ′′

k is substantially more
challenging for functions that are not ex, since the derivatives bring in new operations that cannot
be so compactly represented in terms of a general k - for instance, the power term F ′′

0 (x) = −1
2x

n

is overwhelming. However, there are other function “starting points” that produce compact results
- to be discussed next. Overall, perhaps it can be gleaned from this example that the Bernoulli
numbers play a mysterious role in scaling down these recursive remainder terms that come up as
governed by Equation 1. Based on the formula computed in the last post, it is clear that finite sums
can be evaluated in terms of this method - however, there are challenges that arise. For instance,
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Equation 1 solves for only F ′′
k , and calculation must be done to attain F ′′′

k and F ′
k before the next

F ′′
k+1 can be evaluated. This means that every F ′′

k must have an anti-derivative in order to carry
out the next order of calculation - an obvious constraint.

Let’s solve for F ′′
k (x) for another everywhere positive function - consider F ′′

0 = −1
2 sin

2 (x). In this
case, we get the following:
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where 3 cos(1)−2 sin(1)
3 = −0.0206784, so the integrated function scales down by a factor of about 50

each iteration of the Euler-Maclaurin formula variation. These scaling factors are very interesting to
examine, as they give clear indication of the “value” provided by carrying out another Euler-Maclaurin
summation iteration. The interesting fact is that for both Equation 2 and Equation 5, the general
summation function remains within the same family for all integer k > 0. Categorically, Equation
1 (which governs the evolution of F ′′

k (x)) is a differential difference equation - a special case of the
functional differential equation. The simple results that we achieve with Equation 2 and Equation
5 are not to be found for any F ′′

0 (x) - for example, consider F ′′
0 (x) = xn. However, another

interesting pattern is gleaned by numerical study of F ′′
0 (x) = xn - that is, that every kth iteration

leads to a detailed and not simple formula that goes to 0 if n < 4k. This makes the Euler-Maclaurin
expansion studied in the last post highly efficient for computing the power sum with 0 remainder.
To prove this identity, consider first that from Equation 1, we get the following for the highest
order polynomial terms for F ′′

k−1 (x) = xn such that F ′′
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n+ a2x
n−1+ a3x

n−2+ a4x
n−3 . . .:
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where (n)p is the falling factorial of order p. This very general identity means that for every
nth power term substituted into Equation 1, the resulting surviving polynomial terms will be
(n− 4)th power and less. Then, if these terms are substituted again for the next k + 1, then the
highest surviving term will be (n− 8)th power and less. This trend continues, with computationally
sophisticated general expressions for the am surviving coefficients, but with certainty that each
time Fk is computed, the power of the surviving terms will be decreased by 4. This is simple
for finite polynomials - however, for functions represented by infinite power series, Fk can become
computationally complicated to determine in terms of k. However, Equation 2 and Equation 5 are
examples of simplified functions in which F ′′

k can be computed generally in terms of a very similar
family of functions expressible as infinite power series’. It will be interesting to investigate these
identities further to come to an understanding of a general trend in starting functions for which F ′′

k

can be reliably expressed in terms of k. I’m also interested in trying this decomposition in terms
of Riemann Zeta like series - though the analytic continuation of this function for 0 < R (s) < 1 is
often considered intractable, I am curious what results will appear with negative integer polynomial
powers (for R (s) > 1). This will be the topic of my next post. This concludes this blog post.
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