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In this blog post, we will prove more identities of the Riemann Zeta function. In particular, we will
prove that for s = o + it and o > 1:
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This identity was due to Euler. To prove this relation, we will follow similar reasoning to the proof
of the analytic continuation of ¢ (o + it) to o > 0 (but remember, this identity does only apply for
o > 1). First:
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As can be seen, as more factors of (1 — #) are added multiplying ¢ (s), the series of terms that
remain are only ones which do not have divisors of any of the n that are present multiplying ¢ (as
in, in the last line of Equation 2, we do not have any denominators that can be divided without
remainder by 2 or 3). Now, since the fundamental theorem of arithmetic says that any integer
greater than 1 can be represented as a product of prime numbers, this means that the infinite
product of prime numbers all multiplying ¢ (s) should leave no numbers left on the right side
except the 1. We obtain:
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Thus, Equation 3 is proven. It is interesting to consider if there is an analogous prime number
identity for the analytic continuation of (o +it) to o > 0. This query is motivated by the



philosophical benefit of seeing proofs - if one knows how an answer was achieved, they can better
reason about how other problems can be tackled.

This proof will be most straightforward to demonstrate by analysing the series resulting from
multiplying by various prime number expressions. For instance:
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Furthermore, the remaining series on the right side only consists of terms that do not contain any
of the odd prime divisors multiplying on the left side (that is, the right side of the third line of
Equation 4 does not contain any numbers with denominators that can be divided by 3 or 5). All
the odd denominators are added once, while the terms with even denominators are negative and
multiplied by 2. Thus, the test for all the odd denominators is whether it can be divided by any
odd primes on the left side, while the test for even denominators is the same with the additional
condition that the denominator cannot be divisible by 4. From this analysis, it is clear that the
alternating nature of the 7 series is such that additional even integer terms come into influence
that are not present in Equation 1. However, one may have an intuition that when the product
involving all prime numbers is taken on the left side of Equation 4, perhaps only the 1 — —S may
remain on the right side for ¢ > 0. However, this can’t be true, because then substitution into
the formula ¢ (s) = (1 — 2%)_17] (s) would yield Equation 3 for ¢ > 0. But that is only true for
o > 1. Furthermore, it seems that the current form of the factors on the left side of Equation 4 does
not easily simplify the right side - however, what we have observed above is remarkably helpful in
building a computing model of the product developing in Equation 4 - see the next paragraph.

The method for computing the series resulting from the product in scientific computing software
is one in which the modulo function is quite useful. Consider the second line of Equation 4, where
the product of the first two primes has been expressed. For this product expression, the resulting
series is given by:
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where the idea behind the ceiling functions is to be 1 when no primes divide the nth term and

otherwise be (. This idea can be put together to give the series formula specified for the product

over all prime numbers:
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Future blog posts will examine more interesting products involving the Dirichlet 5 function, as well
as a philosophical summary of the idea of oco. This concludes this blog post.

Po2 odd prime



