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This blog post will summarize the method used by De-Yin Zheng in 2007 to find solutions to infinite
series involving the Harmonic Numbers. This paper can be found through Google Scholar on the
worldwide web. This post is directly related to the post discussing the integration of a special
class of logarithmic functions, where it was found that the solution is attainable in terms of a single
infinite series involving powers of the generalized harmonic numbers. Though a generalized solution
to the integral for all positive integers a and b will still be elusive from this post, this post provides
the general method that, with enough mathematical accounting, would make the solution tenable.

To begin, we will present a result proven by Gauss:

2F1 (x, y; 1− z; 1) = Γ

[
1− z, 1− x− y − z

1− x− z, 1− y − z

]
(1)

where 2F1 (x, y; 1− z; 1) is Gauss’ hypergeometric function, and Γ (a1, . . . , an; b1 . . . , bm) = Γ(a1)...Γ(an)
Γ(b1)...Γ(bm) .

Now we will introduce some series identities:
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where σk = ζ (k) (where σ1 = γ, the Euler-Mascheroni constant), and where the second identity
was discussed in the post discussing the generator of explicit expressions of the Stirling Numbers

of the First Kind post. The functions H
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Stirling Numbers of the First Kind in terms of the Harmonic Numbers. For example, for k = 2,[
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k+1 is the series of powers of the Harmonic Numbers

without any minus signs, while H
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k+1 is the series with minus and plus signs that is characteristic

of the Stirling Numbers of the First Kind. With these identities defined, we can now proceed with
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the multivariate relation defined in Equation 1. First, the left side of Equation 1:
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where (x)n =
∏n

i=1 (x+ i− 1) is the rising Pochhammer Symbol. Implementing the last two lines
of Equation 2, we obtain a multivariate series in terms of x, y and z. Using the first line of Equation
2, we can write the right side of Equation 1 in terms of a multivariate series as well:

Γ

[
1− z, 1− x− y − z

1− x− z, 1− y − z

]
= e

∑∞
k=1

σk
k (zk+(x+y+z)k−(x+z)k−(y+z)k)

= eσ2xy+σ3xy(x+y+2z)+σ4xy(x2+y2+ 3
2
xy+3xz+3yz+3z2)+...

(4)

Now, applying the Maclaurin series (ex =
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k=0
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k! ) to Equation 4, and then setting it equal to the
series from Equation 3 (applying the last two lines of Equation 2) via Equation 1 leads to many
identities such as (by setting the coefficients of the powers of x, y, and z equal in the multivariate
series equality), including:
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Through other similar summation theorems such as the one in Equation 1, such as that by Dougall
and Dixon (see Zheng 2007), we obtain other results, such as:
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Zheng 2007 lists many other identities from these multivariate series expansions. This concludes
this blog post.
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