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Last post, we considered the Fourier Coefficient defined as:
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Through methods discussed in the last post (“PDE Fourier Series: Taylor Series”), we derived the
series representation for cn, n

∂cn
∂n , and L∂cn

∂L and related them to the foundational PDE. The series
representations derived are:
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In this post, we will state the equivalent series representations for the altered Fourier coefficient
definition:
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The series representations analogous to Equation 2 for the updated Equation 3 are:

cn =

∞∑
m=0

(
L

2πin

)m g(m) (0)

m!

γ (m+ 1, πin)− γ (m+ 1,−πin)

2πin

n
∂cn
∂n

= −
∞∑

m=0

(
L

2πin

)m g(m) (0)

m!

γ (m+ 2, πin)− γ (m+ 2,−πin)

2πin

L
∂cn
∂L

=

∞∑
m=0

(
L

2πin

)m+1 g(m+1) (0)

m!

γ (m+ 2, πin)− γ (m+ 2,−πin)

2πin

(4)

As given in the last post, the lower incomplete gamma function is given by:

γ (s+ 1, z) =
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Substituting Equation 5 into the top line of Equation 4, we find the general solution:
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Now this formula can be used for analysis. Assume that g (x) = xs, where s is a positive integer.
In this case, g(m) (0) = m! δms. Then, cn is given as:
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This solution for cn implies that every even or odd power greater than 0 and less than or equal
to s (depending on if s is even or odd, respectively) will have a reciprocal power of n associated.
This means that the resulting Fourier Series (once x = 0 and L = 1 are taken) will be in terms of
Riemann Zeta functions in the integers. This general cn can now be substituted into the formula
for the Fourier Series, setting x = 0 and L = 1, and we get:
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Now we zoom in on s even - switch the order of summation of n and q. Note that the first term in
the Equation 8 is the c0 term from the Fourier Series. We then get our Riemann Zeta function:
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This relation means that we can solve for even order Riemann Zeta’s in terms of lower even order
Riemann Zeta’s on the positive integers. In particular, it is evident that:
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Indeed, this is one way to solve the Basel Problem, a historically important problem first solved by
Euler:
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I suspect that Equation 10 is not new, and that there are many more insights to be found from
studying Fourier Series as methods to solutions of a general series. I will show that the known
solution for ζ (4) is also attained from Equation 10:
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This concludes this blog post.
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