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Recall the formulation of the complex Fourier Series:
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This formulation is independent of L given that é > x. This means that we ought to be able to

integrate the top line of Equation 1 in L without changing the answer. This statement is expressed
in the following equation:
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Switching the order of integration in L’ and 2/, we find:
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Now we are left with integrals of the form:
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we get:
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Substituting u = —%,
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where Ei is the exponential integral, defined as:
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where we note that this integral must be understood in terms of the Cauchy principal value since
the integrand diverges at ¢ — 0. In particular, the following fact allows the integral to be defined:
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Thus, the integral diverges oppositely on each side of ¢ — 0, such that the diverging parts cancel
and only the finite parts contribute to the value of Ei (). Proceeding onwards, using Equation 5
to compute Equation 3, we get:

- X et (5 (5w ()

n=—oo

. /_—Lx| d:r/(L 3(233")% - (Ei (_%m;g;/— a;’)> B <2m‘n (zc — x’)))

2

Ny

This is an interesting conclusion, as it seems that the Fourier series has been transformed without
changing the value of g (z), and L is still a free parameter in the equation. It would seem natural to
analyze the equation by taking the limit as L — oo, but this proves difficult, as one must account
for how the ratio of 7 evolves as one sums in n towards 4oo, as this is a ratio of two different
variables both limiting towards co. As well, the integrals in 2’ have upper and lower bounds that
involve L, meaning that the bounds also go to +oc.

There are other questions that are pertinent. From previous investigations on this blog, the Fourier
series prior to integrating in L has the following form:
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The previous discussion outlined the idea that this function behaves like a Dirac Delta function, but
is not a Dirac delta function in that it is not 0 everywhere and infinite at some value, but instead
is an infinite frequency sine wave with a divergence at ' = z such that when integrating, all values
average to 0 (by the sine wave) but the 2/ = z value which is infinite and does not average out.
Averaging this function in L as we have done above should not change this behaviour, particularly
as long as N > L. It is often stated that taking the L in a Fourier Series to infinity leads to the
Fourier transform - this would be an interesting idea to explore in this alternative formulation,
though it will not be discussed here.

It would be worthwhile to evaluate Equation 8 for a test function, such as g (z) = z. We evaluate
the integrals and set x — § and L — 27. We then get an intriguing expression for 7:
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Many other expressions are possible for g () = z, and countless more are possible for different g (z)
functions. It may also be possible to integrate Equation 8 again in terms of L and apply the same
formalism to obtain more alternative Fourier Series expressions. This concludes this blog post.



