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In the last post, I alluded to the idea that integrating the polylogarithm function is somewhat
more challenging than integrating the simple logarithm. In this post, I address this point and
provide strategies for completing polylogarithm integrals via rather different (less brute-force,
computational based) strategy than my recommended algorithm (see previous post) for computing
simpler logarithmic integrals. First, acknowledge that polylogarithm is defined as follows, with the
quite elegant derivative relationship:

Lis (x) =

∞∑
k=1

xk

ks

=⇒ ∂xLis (x) =
Lis−1 (x)

x

(1)

With this function definition given, it is clear that Li1 = − ln (1− x) and that Lis (0) = 0 for any s.
Also, the derivative relation creates some useful algebra when integrating by parts. For example:∫ x

0
dtLi2 (t) = [tLi2 (t)]

t→x
t→0 −

∫ x

0
dtLi1 (t)

= xLi2 (x) +

∫ x

0
dt ln (1− t)

= xLi2 (x)− (1− x) ln (1− x)− x

(2)

This “polylogarithm integration by parts” algebra is the main method towards a solution for
polylogarithm integrals that I will demonstrate in this blog post. Simply put, integrate by parts
until one attains a Li1 (x) that can be converted to a logarithm. Then one can focus on the
remaining polylogarithm term. Now that we have introduced this method, I will now tackle a
relatively more challenging problem - consider the following integral:

I1 (x) =

∫ x

0
dtLi2 (t) Li2 (1− t)

= [(tLi2 (t)− (1− t) ln (1− t)− t) Li2 (1− t)]t→x
t→0

−
∫ x

0
dt

(
t

1− t
Li2 (t) ln (t)− ln (1− t) ln (t)− t

1− t
ln (t)

)
= xLi2 (x) Li2 (1− x)− (1− x) ln (1− x) Li2 (1− x)− xLi2 (1− x)

−
∫ x

0
dt

(
t

1− t
Li2 (t) ln (t)− ln (1− t) ln (t)− t

1− t
ln (t)

)
(3)

1



Expand 1
1−t =

∑∞
k=0 t

k as the geometric series. Then, the following integral identities are useful:∫
dt t1+kLi2 (t) =

Bt (3 + k, 0) + t2+k (ln (1− t) + (2 + k) Li2 (t))

(2 + k)2
+ C∫ x

0
dt ln (t) ln (1− t) = −Li2 (x)− (1− x) ln (1− x) (ln (x)− 1)− x (ln (x)− 2)∫ x

0
dt

t

1− t
ln (t) = − ln (1− x) ln (x)− x ln (x)− Li2 (x) + x

(4)

where the first line of Equation 4 can be attained by integrating by parts twice and differentiating
the polylogarithm twice, noting that Li0 (t) = t

1−t (where Bt (3 + k, 0) is the incomplete beta
function). The second line result is purely logarithmic and can be readily attained using the
methods of the recent previous posts, and the third line can be attained through carrying out the
geometric series expansion, doing integration by parts, then doing the integral and evaluating the
series expansion. With these identities stated, we can now evaluate Equation 3 in terms of a series
expansion:

I1 (x) = xLi2 (x) Li2 (1− x)− (1− x) ln (1− x) Li2 (1− x)− xLi2 (1− x)

− Li2 (x)− (1− x) ln (1− x) (ln (x)− 1)− x (ln (x)− 2)

− ln (1− x) ln (x)− x ln (x)− Li2 (x) + x

−
∞∑
k=0

Bx (3 + k, 0) ln (x) + x2+k ln (x) (ln (1− x) + (2 + k) Li2 (x))

(2 + k)2

+
∞∑
k=0

∫ x

0
dt

Bt(3+k,0)
t + t1+k (ln (1− t) + (2 + k) Li2 (t))

(2 + k)2

(5)

Now the solution is on the run. The critical step is to find that
∫ x
0 dt Bt(3+k,0)

t = x3+kΦ (x, 2, 3 + k),
where Φ (x, s, α) =

∑∞
n=0

xn

(n+α)s
is the Hurwitz Lerch Phi (Lerch Transcendent) function (try series

expanding the incomplete beta function, then integrate and the Lerch Transcendent will arise).

An additional integral is
∫ x
0 dt t1+k ln (1− t) = x2+k (xΦ(x,1,3+k)+ln(1−x))

2+k (again, series expand the
logarithm and integrate). Now, we present the full solution, numerically checked.∫ x

0
dtLi2 (t) Li2 (1− t) = xLi2 (x) Li2 (1− x)− (1− x) ln (1− x) Li2 (1− x)− xLi2 (1− x)

− Li2 (x)− (1− x) ln (1− x) (ln (x)− 1)− x (ln (x)− 2)

− ln (1− x) ln (x)− x ln (x)− Li2 (x) + x

−
∞∑
k=0

Bx (3 + k, 0) ln (x) + x2+k ln (x) (ln (1− x) + (2 + k) Li2 (x))

(2 + k)2

+

∞∑
k=0

x3+kΦ (x, 2, 3 + k)

(2 + k)2
+

x2+k (xΦ (x, 1, 3 + k) + ln (1− x))

(2 + k)3

+
∞∑
k=0

Bx (3 + k, 0)

(2 + k)3
+

x2+k (ln (1− x) + (2 + k) Li2 (x))

(2 + k)3

(6)

Even a relatively simple polylogarithmic integral like I1 (x) provides substantial complexity relative
to the relatively compact form of the analogous logarithmic integral. This concludes this blog post.
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