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Recall fractional integration formula:
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The first question I set out to answer is what the formula actually means in the context of a € Z,
a > 2. I was able to answer this question quickly through attempting o = 2 for f (x) = €®. In this

case: )
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An insight that can be drawn from this example is the idea that because J'+? = J°J# we can
carry out the kind of repeated integration characteristic of the first equality in Equation 2 for cases
where o € Z,a > 2 such that § = |a], and § = o — |«] < 1. Then, all that is left is to interpret
J?, which is governed simply by Equation 1.

Now that this is clear, I will investigate some results from this fractional integration formula. First:
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where I' (N, z — t) = f;o tN=1le~t is the incomplete gamma function. Now we can be creative with
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this formula - let f (t) = e’. First note that J"e® = e” — >}~ 7. Then, we find:

x N
/ AT (N, z— 1) = (N = 1)l 3 (J"f) ()

0 n—
N1 n—1 ZEk
:(N—l)!exz_:l (e"” Z;)k')

N N
B DN
k=0 n=k+1

N
>

k 4
— NI — (N —1)le® %(N—k) )
k=0
- | _
k=0 iz = !

'N+1,z
:N!(ll“(NH Z( ))
=N!-T(N+1,z)+zI'(N,z)

I’ve confirmed this result with Mathematica. Another (simpler) calculation is possible for f (z) =
aP, where p is a positive integer (since J"tP = (nfp)!t”ﬂ’):
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Which is a tricky result to derive otherwise. Another interesting result is if we make f () = €' -
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Well that was a marathon solution! The real part of this solution is [ dtI' (N, 2 — t)e™" cos (t)
and the imaginary part is [’ d¢T (N, z —t)e *sin(t). Through repeated calculus methods, we
have obtained the solutions of this complicated integral. In the next post I will cover more on the
fractional calculus aspects of Equation 1. This concludes this blog post.



