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Recall the Fourier Coefficient definition we’ve been using lately:
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and the resulting Fourier Series is defined by:
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Through expanding Equation 1 as a Taylor Series, we obtained the following in the last post:
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In these cases, the second sum is coupled to the first sum in the form of the upper bound. To
decouple these sums, we switch the order of summation and then index the sum in m down by q.
Then, we attain:
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To verify that these formulas are correct, recall the partial differential equation satisfied by these
terms:
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Dividing both sides by (−1)n, we get for the left side:
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From Equation 4, it is easy to show that:
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It is then straightforward to show that only the first term on the right hand side of Equation 7
survives after substituting into Equation 5. This serves as one verification that Equation 4 is indeed
the correct - substituting various known cn and g (x) pairs is another way to verify Equation 4’s
correctness - I leave this to the reader.

Having verified the identity in question, we will now use it to solve for cn associated with a given
set of g(m) (0) coefficients. We will then use the same coefficients to solve for g (x) for the left
side of Equation 2. Then, substituting g (x) and cn into Equation 2, we may arrive at interesting
series identities for n. Consider first the example of g(m) (0) = (k)m, where 0.5 < k < 1 is a real
number and (k)m is the falling factorial of k of order m. Noting first that g(m+q) (0) = (k)m+q =
(k)m (k −m)q, we solve for cn and g (x):
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. The outcome of this example then involves

combining these results into Equation 2, then setting x = 0 and L = 1:
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I have verified Equation 9 for k = 1 and k = 2, as well as numerically for irrational numbers such
as k = 1

π . This is comforting numerical confirmation. I will conclude with two comments on what
has been done thus far:

� the utility of Equation 4 is that you can consider g(m) (0) that lead to a given cn for which
you wish to find the Fourier Series solution. However, some early efforts have been futile for
finding some solutions cn as they appear to not all fit well with the form of cn in Equation 4.

� it is indeed true (and noteworthy) that not all series given by cn will correspond to a Fourier
Series function g (x). In a function space known as L2, the model Fourier Series must be square

summable. For example, cn = (−1)n−1

√
n

is not square summable since
∑∞
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is a result of Parseval’s Theorem in a function space.

This concludes this blog post.
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